

Toxicology and Carcinogenesis Studies of Ginseng in F344/N Rats and B6C3F1 Mice

(Gavage Studies)

Po Chan, PhD

National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Technical Reports Subcommittee November 19, 2009

NTP Initiative on Herbal Products and Dietary Supplements^a

- Approximately one third of the US population is believed to use some form of complementary and alternative medicinal agents that are claimed to prevent and or treat diseases
- The use of herbal medicines and other dietary supplements has increased substantially since passage of the 1994 Dietary Supplement Health and Education Act
- Herbal formulations are not subjected to FDA pre-market approval to ensure their safety or efficacy
- Many of the reports on herbal products are from non-peer-reviewed literature and lack appropriate controlled scientific evaluation
- NTP has many products that have been nominated and selected under this
 initiative for evaluation of their potential adverse effects in laboratory animals

^aChhabra, R.S., Bucher, J.R., Wolfe, M., and Portier, C (2003) Toxicity Characterization of Environmental Chemicals by the US National Toxicology Program: an overview, Int. J. Hyg. Environ. Health 206, 437-445

Background Information on Ginseng

- Fourth most widely used herb in USA
- Used in herbal remedies, dietary supplements, cosmetics, and as food additives, to enhance physical and mental stamina and endurance
- The present studies used Panax ginseng, the most popular product on the market
- More than 40 active compounds are identified in ginseng root and categorized into 3 groups: protopenaxadiol ginsenosides, protopenaxatriol ginsenosides, oleanolic acidsaponins
- Composition of ginseng preparations vary. G115 or Ginsana™ is the only product standardized to contain 4% ginsenosides, but proportions of different ginsenosides not guaranteed.

20(S)-protopanaxadiols			
Ginsenoside	RI	R2	R3
Rb1	glucose-glucose	Hydrogen	glucose-glucose
Rb2	glucose-glucose	Hydrogen	glucose-arabinose (pyranose form)
Re	glucose-glucose	Hydrogen	glucose-arabanose (furanose form)
Rd	glucose-glucose	Hydrogen	glucose
		20(S)-protopanaxatri	ols
Re	Hydrogen	-O-glucose-rhamnose	Glucose
Rf	Hydrogen	-O-glucose-glucose	Hydrogen
Rg1	Hydrogen	-O-glucose	Glucose
Rg2	Hydrogen	-O-glucose-rhamnose	Hydrogen
Rh1	Hydrogen	-O-glucose	Hydrogen

FIGURE 1 Structures of Common Ginsenosides Gillis (1997) and Sticher (1998)

Limited Toxicity Information on Ginseng

- A13 week dosed feed study in rats showed no toxic effects at 15 mg/kg of G115 administration
- Chronic exposure for 52 weeks in mice had no effects on body weights and survival at 8 mg/kg of ginseng extract in drinking water, but behavioral response to stress was exaggerated
- In humans ginseng abuse at high doses causes hypertension, nervousness, insomnia, diarrhea and estrogenic toxicity with symptoms such as mammary nodularity and vaginal bleeding
- Some ginsenosides have shown anti-mutagenic activity in a number of experiments

Nomination Rationale

Ginseng was selected for toxicity/carcinogenicity studies because of:

- Significant human exposure
- Lack of adequate toxicity information in the literature

NTP Studies

- 2-Week, 3-month and 2-year toxicity and carcinogenicity studies of ginseng were conducted in male and female F344/N rats and B6C3F1 mice by gavage administration
- Mutagenicity assays were carried out in various Salmonella strains and micronuclei frequencies were determined in blood samples collected from 90-day studies in male and female mice

Results of 2-Week Toxicity Studies in Rats and Mice

Dose levels used: 0, 125, 250, 500, 1,000, or 2,000 mg/kg in methyl cellulose

- Survival was not affected
- Body weights of male rats at 2,000 mg/kg were15% lower
- No histopathology attributable to ginseng
- Due to lack of toxicity, selected dose levels for 3-month study were 0, 1,000, 2,000, 3,000, 4,000, 5,000 mg/kg in sterile water

Results of 3-Month Toxicity Studies in Rats and Mice

- Survival not affected
- Body weights comparable to that of controls
- No changes in hematology, clinical chemistry, organ weights, histopathology, sperm parameters, or estrous cycle attributable to ginseng administration
- Due to lack of toxicity, selected dose levels for 2-year studies were 0, 1,250, 2,500, 5,000 mg/kg in sterile water

Results of 2-Year Toxicity and Carcinogenicity Studies

Rats

- Survival of 5,000 mg/kg females lower than other groups (36/50, 27/50/, 34/50, 24/50). Cause of lower survival was not related to ginseng administration
- Final body weights of high dose females were 10% lower than controls
- Incidences of mammary gland fibroadenoma occurred with a negative trend (32/50, 30/50, 30/50, 16/50); the decreases were significant in the 5000 mg/kg dose group

Mice

- Generally, survival similar to controls
- Body weights were comparable to controls
- Histopathologic changes were considered not to be related to ginseng treatment

Genetic Toxicology

- Ginseng was not mutagenic in Salmonella strains TA97, TA98, TA100, TA102, TA104, TA1535 with or without S9
- No increases in frequency of micronuclei in peripheral erythrocytes of male and female B6C3F1 mice exposed to ginseng for 3 months

Conclusions

Under the conditions of the 2-year gavage studies, *there was no evidence* of carcinogenic activity of ginseng in F344/N rats or B6C3F1 mice at 1,250, 2,500, or 5,000 mg/kg.

The incidence of mammary gland fibroadenoma was significantly decreased in 5,000 mg/kg female rats.